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ABSTRACT

The Cauchy problem for various
types of second order nonlinear elliptic
equations is considered. A substitution
v-eu in the equation leads to a
perturbed equation whose solution is
compared to an appropriate solution of
an unperturbed second order linear
elliptic equation obtained by formally
setting .- 0 In each case a
-logarithmic convexity argument is used
to show that appropriately constrained
solutions of the original equation
(assumed to exist) are shown to differ
from a solution of the associated linear
equation in a manner depending

(K {continuously on the parameter 4.
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INTRODUCTION

A problem in ordinary or partial differential equations is said to

properly posed if it has a unique solution in the class under
9.

consideration and if this solution depends continuously on the data in

some appropriate measure. Otherwise the problem is said to be

improperly posed. Although Hadamard (8) defined the question of proper

posedness at the turn of the century and demonstrated that the Cauchv

problem for the Laplace equation is improperly posed, relatively little

attention was given to improperly posed problems for partial

differential equations until the papers of John (9) and Pucci (16)

appeared in the 1950's. Up to that time the prevailing attitude seemed

to be that only properly posed problems were of interest in

applications.

It is realized now, however, that many problems of physical

interest are improperly posed. For example, the Dirichlet problem for a

second-order linear elliptic equation on a smooth bounded domain in RN

is properly posed. However, in many physical situations, only a portion

of the boundary may be accessible to data measurement. In such cases,

one measures additional data--usually the gradient of the unknown

function--on that portion of the boundary which is accessible. The

resulting problem is an improperly posed Cauchy problem. Pavne (14)

showed that this problem can be stabilized by imposing an a priori bound

on the L2--norm of the solution. (Special cases of this problem had

been considered earlier; for example, Lavrentiev (11) showed that

imposing a pointwise bound on the solution of a Cauchy problem for the

Laplace equation is sufficient to ensure that the solution will depend

* continuously upon the Cauchy data in some neighborhood of the data

surface.) Extensions of the result in (14) to the Cauchy problem for

equations of the type
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Lu - f(x, u, grad u) , (1.1.

for a uniformly elliptic second-order linear operator L are found in

(6, 18-20). In each case a Holder continuous dependence result is

obtained by restricting the L2-norm of the solution.

This work investigates improperly posed Cauchy problems for some

second-order nonlinear elliptic equations which cannot be written in the

form (1.1) but which can be written as

Lv - g(x, v, grad v, Hv), (1.2)

where Hv is the Hessian matrix of v . Examples of such equations are

the minimal surface and capillary surface equations. The substitution

v - eu in (1.2) leads to a perturbed equation of the form

Lu - ekg(x, u, grad u, Hu) (1.3)

for some positive number k . The corresponding unperturbed equation is

Lh-0 , (1.4)

and logarithmic convexity arguments are used to derive stability

estimates for v - ch , where h is a solution of an appropriate Cauchv

problem for (1.4).

The question of the feasibility of approximating a solution of a

Cauchy problem for a perturbed equation by a solution of a Cauchv

problem for the corresponding unperturbed equation will be referred to

as the question of continuous dependence on modeling in the Cauchv

problem for the perturbed equation. Adelson's work (1, 2) illustrates

this concept. His results apply, for example, to show that an
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appropriately constrained solution of the Cauchy problem for the

singularly perturbed equation

e2v - v - E(x) (1.5)

can be approximated by the solution of a Cauchy problem for

-Aw - E(x) (1.6)

which should, in some sense, be the limiting problem as e tends to

zero.

The question of existence of solutions for perturbed problems for

all values of e in some interval (0, e0 ) presents no difficulty in

most reasonable properly posed problems for ordinary or partial

differential equations. Hence, in such problems, one may allow c to

tend to zero and prove that the solution of the perturbed equation

converges to the solution of the unperturbed equation in some

appropriate measure.

However, for improperly posed problems, for given data the solution

may fail to exist for some or all values of e in the interval. One

can compensate to some extent for this difficulty by allowing for small

variations in the data--not an unreasonable thing to do since the data

usually cannot be measured exactly. This work shall not be concerned

with the complicated questions of existence but shall assume that all

solutions under consideration do indeed exist.
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2. Notation

Let D be an N-dimensional domain bounded by a closed surface C,

and let E be that portion of C on which Cauchy data are prescribed.

The complement of E with respect to C is denoted E', and no data

are given on E'. Assume that the closure Z of Z is a C2 +a

surface for some a > 0. Since Cauchy data are given only on the

portion Z of C, one cannot expect to derive estimates for continuous

dependence (on the data) on the entire domain D. In particular one

might not expect to derive such estimates for subdomains of D whose

boundaries contain a portion of V. Thus a family (D.) of subdomains

of D on which to derive stability estimates is chosen as follows:

Let (f(x) - constant) define a set of (not necessarily closed)
surfaces. This set is to be chosen so that for each a e (0,1] the

surface (f(x) - a) intersects D and forms a closed region DU whose

boundary consists only of points on Z and points on the surface

(f(x) - a). We set z- z nD and S a f(x) - a n D a

Assume that f(x) has continuous second derivatives in DI"

Furthermore, assume that

if P : 7 ,then D s DT; (2.1)

Igrad fi 2 6 > 0 in D (2.2)

Af : 0 in D; (2.3)

lAfi S 62d in D (2.4

where 5 and d are positive constants. (In Section 5, (2.3) and

(2.4) are modified somewhat.) Assume that the surfries have been chosen

so that Da has positive Lebesgue measure for 0 < a : 1 but that D,)

-4-



has Lebesgue measure zero. For N ? 2, one can choose a raidal

harmonic function f which satisfies (2.1) - (2.4).

Throughout this paper commas are used to denote differentiation,

and the summation convention is used for repeated indices. For example,

ui i -i ]

The arithmetic-geometric mean (A-G) inequality states that, for

positive numbers a-, b, and c

2 1 2
2ab _< ca + • bc

-5-
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3. This section examines the minimal surface equation

(l + IVvI2 )-/2vjii 0 in D (3.1)

On Z , assume that the Cauchy data satisfy

f (2 + v,iv, i) ds s C (3.2)

for some small positive number e. The substitution v - eu in (3.1)

yields the perturbed equation

2 2

Au - e 2 ui u i j in D , (3.3)

2 2) -1/2
where p - (1 + e Ivul Formally setting c - 0 in (3.3) gives

Laplace's equation

Ah - 0 in D. (3.4)

Setting w - u - h yields

2 2
Aw - e u u,u, .. in D (3.5)

Regarding the data on Z, require, for some p < 6, that

j (u,i u, i)2 I(u,lu, ji - u,ju1 )nj Ids - O(e " ) (3.6)
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Furthermore assume that

J(w2 + w, iw,i)ds - O(e 4 -p (3.7)

It is shown that if u and h are appropriately constrained solutions

of (3.3) and (3.4), respectively, which satisfy (3.6) and (3.7), then

for 0 < a < a1< ,

J (v - ch)d.- 0[(6p)v(a)} (3.8)

D

where v is a smooth function of a satisfying

V(O) - 1 , v'() < 0, V(a ) - 0 . (3.9)

The following argument closely resembles the one used by Payne (14)

when he computed bounds for solutions of ill-posed Cauchy problems for

linear elliptic equations. To begin the derivation of (3.8), set, for

a e [0,1]

F(a) (aQ + f (z - 7) D [w,iw,i + wAw]dxjdt (3.10)

D
17

where Q is given by

-k w ds +k :w,.w,-ds + k 2 (3.11)

-7-



and the ki are positive constants which will be chosen later. It is

shown that F satisfies a differential inequality of the form

FF" - (F')2 2 -C1FF'- C2F 2  (3.12)

on the interval (0,a1) for explicit constants C1  and C2 . The

solution of this inequality then leads to the desired bounds.

The first and second derivatives of F are

F(a) - FO ID (w,iw,i + wAw]dxdl , (3.13)

'7

F() - J [wiw,i + wAw]dx (3.14)

D

Integrating (3.13) by parts, one can write F(a) and F'(a) in more

useful forms:

P~)- f{JS ww,.if, I1VfI 1 ds + {z ww..in, .dsdi7

.777

S0 E

Note that on S the component nj of the unit normal is given by
-i(f~jIVfIl Using (3.15),

-8-



F(a) - Q + F' (n)dq - Q + ww if,idx + J ww inidsdc dY7f D 0j z.

Integrating by parts above and using (2.3) and the A-G inequality,

F(a) - Q + { w2 jVfjds + w 2 f,in ds2 ii i
2 7 a

2 D 01

_ Vf 2w2 dx - v 2ds - v2 f w,iw,ids + Q (3.16)

Dz

for computable constants V and 2 One can now choose the

constants k i  in Q so that

1x 2 dj l F (a) :5 [i rw dx + Q (3.17)

D D

where r - jVfl2

The inequality (3.17) enables the use of the solution of (3.12) zo

estimate the L-integrals of w over the domains De . To derive

(3.12), we need three preliminary estimates.

-9-



Lemma 1: Let a, e (0.1) . Then for a g (O.al4

(Aw) 2 dx S ce4 D [(uiu,i)3 (1 + c uju, )]dx

D D1

+ JZ (U,iu,i) 2 1 (u,-uj ujuii)njIds}

for an explicit constant c independent of g and a

Proof: Define the function w on D1 by

1 in D U E
1-f(x) in D (D U Z)
1-a 1 a a

Note that w - 0 on S, and that jwj _< 1 in DI . Since

f e C ) the first and second derivatives of w are uniformly

bounded on DI .

Now consider

J(a) - J (Aw) 2dx _ w2 p4 (u,iu,i ) 2 u , j k u j k d x

-10-



pA P[(U..i Ui) Ujku'jk (3.18)

+ 4(u, i Ui)u~k U, Iujku~j ,dx

The second inequality above holds since U, ku U, Iu ju'j > 0

By Schwarz's inequality and the A-C inequality,

Cui I vu u1ku'lu~jku'jI < v'.l

Therefore, from (3.18),

2(~ 4 r ~ U,U,) 2 [U 1f2 II2 )2 e4 (,U 2 d

+ 4 ID W2P2 (u.. ui)[u~k U, 2Ujku-J (l+e 2 lvil 2) f 2 (, UU ;)2 ldx

- ID 1W 2(u U, ) 2{u,u, _ (Au) 2}dx

+ 4 [D 1W (u, 1 u, ) juk'I'-uj Au(u, .u U,2u,.2 )
1 dx



To eliminate the second-order terms appearing in the bound for

J(a), integrate the first term on the right side of (3.19) by parts.

First note that

D 1 2 (uiu i ) 2 u , iu , j idx - w uju, n

D 1 w2 (uiui)2u (Au), dx - 2 I 1"w' (u'iu'i)2 dx
,j u,.u,j

4 ID w2 (u, ui)(u ju.ku'j2u'kl)dx • (3.20)

Integrate the first volume integral on the right side of (3.20) by parts

to obtain

J 2 (u,iu,) 2, (Au) - - w (uU,i ) 2 UU n ds

I, u u,2dd

, IF w 2 (Au) 2(u, u, ) 2 dx + 2 IDF ww, .(u, .u, ) 2 u u U, 2dx

D1 D1

I , iu, i)2u,.u,ku, kU,22dx (3.21)

D12
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Combining (3.20) and (3.21) yields

SID 1Jw 2 (u, i ,1 , lUJ2 -fz1 2 (, U1)2 (u ,~,- U, U, 22n . ds

., w 2 (AU) 2 (u,i u,i) 2 d + 2 ID1wi uiU )2 U, 21U, dx

+ 4 JD w 2(u, u,.du, i ,ku,jdx 2 1r w,(u.iu.)2uiU dx

- 4 {D w2 (u,iu,i)(u,ju, ku,.k )dx .(3.22)

Returning to (3.19),

21 2 2, 2,1 e2 -VU 4 u , U d

113



+ 2 ID I I(uiu i) U , juju2( , - I ,j1 )dx (3.23)

D1

Using the A-G inequality, the absolute value of the volume integral

on the right side of (3.23) is bounded above by

k (uu)3 (l+e 2IVul 2)dx + F w p (u'iui) uu dx (3.24)

DuI ( 
3  2 2 DI  (3.24)

for a computable constant k. Thus from (3.18), (3.19), (3.23), and

(3.24),

1J() < w J [(uiu) 2 UujkUjk + 4 (u,iu, )U,kU, Ujku,j2dx

2 2D1

:5 1 w P 2u 2U ju' dxI 
1

+4fwP(u U, u  U, kU, jk dxDI

-5 w 2 (uiui) 2[u,.u,jn - u, jU, n Ids

-14-
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+ k J (uiui) 3( + eIVuI2)dx
D1

The proof of Lemma 1 is now complete.

Before deriving the next two required estimates, it is convenient

at this point to place a constraint on the function u. Using the

result of Lemma 1 and the definition of Q as a guide, require that

J 1  (u,iu, i) 3(1 + f u, ui)]dx - O(e P) (3.25)

This constraint is used in the proofs of the next two lemmas, which are

understood to be valid on the interval (0, a ) .

Lemma 2: If F(a) is given by (3.10). then

IF'I -< F' + K1F (3.26)

for an exDlicit constant KI

Proof: From (3.13) it is immediate that

IF'I 5 F' + 2 ff wAwdxdq 3

By the A-G inequality,

-15-



2 w~dxv f0J xd + (w xt
fD ofD fD

7 '7

so that (3.17) and Lemma 1 yield

IF'(a)I s F'(a) + 252F(a) + 0(0
4 p)

This completes the proof of Lemma 2.

Lemma 3: If F(a) is given by (3.10). then

I [WlW,i 2rl(wifi) 2]dx a: -K 2F' - K3F (3.28)

for explicit constants K2 and K3"

Proof: To establish this lemma, consider the identity (also used in

Payne (14))

2 j (a-q)r'If, kkwk,kAwdx - 2f, kw'kw, in, f,iniVwV 2r" 1dsdr?

D D

JD (a-'1) 2(fIr l) w w - (fw r- ).2 w j 2 dx 3.2")

D

The integrals over S may be rewritten as

-16-



f01, [2f kwkWvin, f, iniIVwI2 ridsdv7

4- ID 2(f, i W, ) 2r"1 - IVW 2dx .(3. 30)

Substituting (3.30) into (3.29) and using the A-G inequality,

'D . - 2r' l (w.ifi)2]dx ; k 3 Jz wiw "ds

k4 f (a-v7)w,iw, idx - k5  (a-7)f, kWkAwdx . (3.31

a a

(The ki in this proof are all explicit positive constants.) Clearly

- k3 Iw,iw,ids 2: k 6F (3.32

Note that

D (a-17)w, iw, idx - w , (3.33'
D .JD

and the proofs of Lemmas 1 and 2 yield the conclusion that

-17-



k 14 fD (a-')v~iw,idx k 7 kF1 - k 8F .(3.34)

a

Finally,

'D (a -r) f ,kw , kavcwdd7 - fD '£kw kAwdxdri

:sk 9  w'kw'k dxd7 + k 10  CJ (w)dxd 7

11

Combining (3.32), (3.34), and (3.35), one sees that Lemma 3 holds.

We can now proceed to derive the inequality (3.12). Using (3.17),

FF"- (F) 2 {IJ 2dx] [jD w,.w, .dx]-f ww..if, .d-]

+ F JD w~wdx - 21F'I *~ fJ ww,.in dsdi7 (33



In arriving at (3.36), we have dropped a number of nonnegative terms on

the right. On account of (3.25), one can find a constant k12 so that

J D wawdxl k 12F, (3.37)

a

and the A-G inequality gives a computable constant k1 3  such that

fJ ' winidsdi _< k1 3F (3.38)

17

For the term in braces in (3.36), by the Schwarz inequality, Lemma

3, (3.17), and Lemma 2,

J rw2dx w, iw, idx - 2[ D ww if, idx] 2

aa a

DL 2d{ 'D W,.dx - 2 D

aaa

92

>-2K3 FF' - 2(K1K 3 + K4 )F
2  (3.39)

-19-



Applying Lemma 2 now to the term IF'I in (3.36) gives (3.12) for

explicit constants C1  and C2.

It is well-known (see, e.g., Levine (12)) that a solution F of

(3.12) which vanishes for one value of a in the interval [O,ai] must

vanish identically. Thus, assume without loss that F(a) > 0 for all

a in [0, a,]. Set

c2/C2

a - exp(-c 1a), G(a) - log F(a) • a , (3.40)

to see that

G"(a) - (CIFa)'2[C2F2 + FF" + C FF' - (F') 2 0 (3.41)

Hence G is a convex function of a, so that by Jensen's inequality,

2-a aa 1

F()a 2 1 : F(l)aI l2I [F(0)]l (3.42)

where

a - exp(-C 1a1 ) (3.43)

Note that F(0) - Q, which is 0(e 4 p ) by assumption.

As has been noted in earlier papers (John (10), Pucci (17)). in

order to make F(a) small for 0 < a < al, it does not suffice to

make F(O) small. One must ensure that F(aI) is not excessively

large. On account of (3.17), it is necessary to constrain the L2-norms

of u and h on DI . Thus, assume that

-20-
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IDu 2dx - 0(e 2 ), JDl1h 2 d - 0(e- 2) (3.44)

One can then compute a constant N1 independent of e so that

C C2

F(a )a1  2 N 2e -2(3.45)
1 1 1

Insertion of (3.45) into (3.42) gives

F(a) - O~e 2al)(-(-l11]a 1 (3.-46)

From (3.17), we now obtain the following.

Theorem 1: If u and h are solutions-of (3.3) and (3.4)

resp~ectively. which satisfy the boundary conditions (3.6) and (3.7) as

well as the constraints (3.25) and (3.44). then the solution %, or

(3.1) satisfies the continuous dependence ineaualityv

*JD (v - eh) 2d. _ 0 {,(6-p),(a)] for 0 < a < a

a

where L/(a) - (a - a1)( I a)

We close this section with some additional remarks. The reason ro:-

deriving (3.12) only on (0, a,) with a1 < 1 is that the deriv.ativ:es

of the function w in the proof of Lemma 1 become unbounded as a

* approaches 1. By restricting attention to an interval (0, at,) wi :h

a2 < a,, one can derive bounds for the Dirichlet integral of ,--h as

follows:

-21-



1 in D5 U E 5
-3 f(x)

Let pu(x) - 13. in D - (D U Z)

where < a2 and a3 is a fixed number between a2 and a Then

(u - h),i(u h),i dx D 2( - h),i(u - h),idx

p p 2 (u h)(u - h),inids - (u h)(u h) i(A2),i

E JD03 03

J p2( - h)(u - h), iidx

a03

-(e4 -p ) + I (u - h)2 A(2 - A2(u - h)L(u - hdx
2 JD h)J D03 D

a3 3

Using Theorem 1, one can show that the first volume integral on the

right side of (3.47) is 0 3 . Using the A-G inequality.

Lemma I, and Theorem 1, we can show that the second volume integral on

the right side of (3.47) is also 0 f 3 . Thus,

D IV(v - ch) 2dx - 0 e
(6 "p )v (a 3

for 0 < 2.

-22 -



4. In this section, we consider the capillary surface equation

((1 + jVvj 2) 1/ 2v) - cv in D , (4.1)

where c is a positive constant. On the surface Z, assume that the

Cauchy data satisfy

z(v 2 + IVvI 2)ds 5 (4.2

for some small positive number c. The substitution v - eu in (4.1)

yields the perturbed equation

Au - C - p u,iu,uj  j +c - i u (4.31

where

p - (1 + 2vu2)/2

Since

1 1 - O(e2)jVu,2

compare u to a function h satisfying

Ah - ch in D . 4

Setting w - u - h,

Aw - cw - e p u, u, u, + - i cu

Under appropriate constraints on u and h, we obtain a continuous

dependence inequality for v - ch - c(u - h) which is similar to that

of the previous section. In order to choose appropriate constraints as

-23-



well as to prove analogs of Lemmas 2 and 3 of Section 3, we need the

following analog of Lemma 1.

Lemma 4: Let ale(O.i). Then there are constants 21 and 22

independent of e so that for each a e (0.1)

f (Aw)2dx 21[ w2dx

a a

+ 12C{ J (u,iu,i)2u,ju,jn 2 - u,ju, 2 2 nj Ids

+ { [(u iu,i)3(l + e u,2) + u2 (uiu,i)2(l + 2 7u2)2

D1

+ lu{p- 1 (uiui)ldx}

Proof: From (4.5) and the A-G inequality

(Aw)2< C W2 + c2 u I4ul + c3 C 4 (u,iu,.u,.i) 2  ( .)

for computable constants c1 , c2 , and c3 . As in section 3, consider

J( F - 4u uj~j2d(.)

-24-
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and note that

J():JD W 2p4 (u,iu, i ) 2 U j jk'

:5 D W2 P2 u, u'i 2 u'k'k+ 4(u, u, Oiu'k U,2ujku'j2]Idx

+ 4u..)[uju~( 2 Pu 2) 4(u, .u,~,u

+~ 4 f?)p(~ui)[(uku 2ujku,2)(I + f2 Iu 2 (u, i .u ,

ID

- A , (4.8)

where ta(x) is defined as in section 3. As in the previous section,

note that

wJ2(, u, 2 u, dx - W (u,.u,. 21U,. -,,n n.,,'ds

+1 w(Au)2(u,.u,.)2 dx + 2 W(u, ~U, 2 u, U,.

-25-



+ 4 JD W 2 (u i UOuju'ku'jku 'fldx

Use the equati.on (4.3) to write

- I U , u ld

-- D1  1. 2A

_ fD 2(u~iui)2 2(Au)dx - c2 ft2 (u, Ui)2p-2 u 2dx

2c ID1W2 (ut , ) 2uAup- dx .(4.10)

Combining (4.9) and (4.10),

J 2 2 22 2 4 ~ ]d

-26-
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W J 2 w(u, .U, 1) 2 u, jU, J,22 - U, , .1.2n i]ds

+ 2 ID W(u iU, ) 2[,W -,U ,IUiU .

+ 4' (u,.iU u, u U,0 ed D (u,.u,i)(u,.u, u, ju'

2 2 2 -2~ 2k~kuld 2 2 1 . j' j ~2

c2 [D W (u,. u, ) p u dx + 2c DW (u,u, .) u(Au)p dx (.1

Returning to (4.8), we use (4.3) to write

4 1D14P2(u~iu~i) [.uku'.fU, jku'JAP-2 _ e 2 (u UIu) 2 ]dx

-27-



Adding (4.11) to (4.12),

A- w f t(tuli U, ) 2 [(u, jU, jI - U, iU, 22n i]ds

+ 2 w(uiu,) 2
w,.u2u~ - Pudu)d

* J w 2 (u U) (u~-1d

* 4c JD 1 2(u, .u, )p- 1u dx .(4.13)

Using the A-G inequality, one can find a constant k so that

A :5 J w2(u, U, d 2 [uu, .~jn, - U, .U, 11n .Jds

+ k JDI(u, i ) 3(1 + f 2 IVuJ 2dx
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+2 P2 (u ,)2 , d
2'Di 'i jIl-jI

+ 'W 2 (uiU, d)2 u2 (1 + f2 JIvuj 2)2 dx

+4c tI C u, .u, ~-1u (4.14)

We can now conclude that

J(a) 5Itj Wl t 2 (u, .U, ) 2(u, .u,j2 n, - U, .U, 21n .)ds

"+D (u U .. ) 3 (1 + E 2 7u12 )dx,

" JD u 2(u, u, ) 2(1 + e2.Vu1 ) 2dx

"I J juIP- (u,. u, .)dxj 41

for an explicit constant I Thus Lemma 4 holds.
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Having obtained an estimate for

JD 
(Aw) 

2dx

one can argue in a manner similar to that of the preceding section. For

a e [0,1] set

F() - Q + j (-) [W, lW,i + wAwldxldn (4.16)

' 0'7

where Q is given by

Q -k 0f1 w 2ds + kc fW,w 1 ds +k 2 C
4 -p (4.17)

with 2 < p < 6 . The ki are positive cbnstants chosen so that (3.17)

holds. Assume that

I (w2 + w,iw,i)ds - 0 ( 4(4.1)

and also impose the constraint
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(u'i u,1) 21ju, n U, - uu, 11 ,nJIds

+ [(uiui)3(1 + e21VU12) + u2(u,i
u , 2(l + E217u 2)2

D1

+ IuIp (uiui)]dx - O(c "p ) (4.19)

We now state the remaining estimates, which are understood to hold on

the interval (0, a,). The proofs are similar to those of the previous

section.

Lemma 5: If F(a) is ziven by (4.16). then

IF'I 5 F' + K1F(4.20)

for a comnutable constant K1.

Lemma 6: If F(a) is given by (4.16). then

i W(wf,.) ]dx - K 2 P - K F
D
a

for explicit constants K2  and K3. (recall that r - Vfl2.)

One may now conclude as in the last section that on the interval

(0, a,),
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FF" - (F') 2 2 - C 1FF' - C 2F2

for explicit constants C1  and C2. Assuming that

JD Iu 2dx - O~-2 D1h 2dx _ -) (.2

we have

Theorem 2: If u and h are solutions of (4.3) and (4.4).

resvectively. which satisfy (4.18). (4.19). and (4.22). then for

0 < a < a

JD (v -ch) 

2 d - (e0(a))

a

with 7(a) (6 - p)(c, - a 1 )/(1 - al1 ), a - exp(-C 1 a) ,and

a, - exp(-Cia1 ).

As in section 3, one can find a continuous dependence inequality

for the Dirichiet integral of v - ch. Introduce the function ~sas in
the last section with 6 <z a 2 and a fixed number d3 between a

and a,. Then

FD (u-h), (u-h), dx :5 JD 2 uh) (-),s

p J (uh(-hnds - JD(u-h)(u-h), i(2 )2 dx

a 3  a 3
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JD J 2 (uh)A(uh)dx

-O(e
4 -p) + (u-h) 2 AGjA 2 )dx

2(J 2 h)A(h)dx (4.23)

JD

Using the A-G inequality and the estimates of this section, we conclude

that

JD (v - h), (v - ch),.idx - 0I-~t)

with 7y(a) given as in Theorem 2.
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5. In this section, we examine a general second-order nonlinear

elliptic equation of the form

(a iJ(x, v(x))vi),j - g(x, v, grad v) in D . (5.1)

Assume that g(x, p, e) - O(IpI + Iji) for x e D, p e R, and

e RN . Also assume that the aij  are C1  functions in the D x R

with aij - Aji and that for 1 < i,jk < N

the functions aij (x,p) and their first derivatives

with respect to the variables xk are uniformly (5.2)

Lipschitz continuous in D x R

To ensure that equation (5.1) is uniformly elliptic, we require that

there be positive constants a0  and a1  so that

a0 M 2 _< aiJ (x,P) i < a1 M~ 2 (5.3")

Nfor each x e D, p e R., and e R . We use the notation

b ij (x) - a (x,v(x)) (5.4)

for a fixed solution v of (5.1) to be considered here. Thus,

(b i) k(x) - (aij ) (x ' v(x)) + (a),p (xk (55)

Consider the Cauchy problem for (5.1) with v and grad

measured on E. The continuous dependence estimate derived for v is

less sharp than those of the previous sections.

As in the preceding sections, assume that
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J(V + 2,V s: (5.6;

for some small positive number e. Miaking the formal substitution

v - eu leads to the following perturbed equation for a function u:

a i (xeu~, +(a j (,CUU,+ e(a ij), (x,Cu)u,.u,
ijip 3-

- O(e)(Iui + Ivul) (57

Compare u to a solution h of the linear equation I S

tA

where Aij(x) -akj(x, 0). Subtracting (5.8) from (5.7),

(A(xw~),+ ( Xe - a (x,0)]u,..

+ [(a) .j(x,eu) - (a ), .(%,0)]u, . +~ ,(a ),pu, .u, .

-O(e)(jul + 1Ivul) (5.9),

where w - u - h. Setting Lw -(A w', ot ht '

uniformly elliptic operator in D.To choose the domains D on nc

to obtain L2  estimates for w, replace the conditions (2.3) and (2.-

on the auxilliary function f by

2Lf :5 0 , LfI :5 6 d
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where 6 and d are positive constants.

To find appropriate constraints under which one can deriveL2

bounds for w, we need to examine the L2 integral of Lw. From

(5.9),

(LW) 2 - re [ u 2u,..iu,..j + u 2Uk ,k+

(a ij), (a ij), (u, u, 1) 2+ u 2 4,U (5.11)

for an explicit constant T. One can estimate

2fD (Lw) dx

a

in terms of data and volume integrals involving only u and its first

derivatives by means of

Lemma 7: Let aie(O. 1). Then for a C(O. a,.).

J L )2 d s ke2.f r u jk F a8 ,

D E 1.x " 7k

-1 bjk ), ju,'ku, 'in + (b jk), .u, u,jnklds + D1[2

* (1 + Clj) 2(u 2u, u,. + (u,.iu, 2 ) + (u,. U, .)(I +

-36-
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for an explicit constant k independent of e and a.

Proof: Using the cutoff function w of the last two sections and the

ellipticity condition (5.3),

u uiju, ijdx - a w u, ijuikdx (5.13)

a 1 
-S-I

D D 1  '

Integration by parts gives

dx- tu b u,,u ds
u ij 'ik J b 'ijuik

- 2 J , kub ijuuidx - 2 f wuu, ijuidx

I w2u2 (b k u , ) ' k u idx . 5. 1

.'.

Rewrite the boundary term in (5.14) as

2 u2bJ kiu, u, nkds

wbij

- 2 u 2 u , k  n• u ,:

2 b- 3 u,.ds
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22 .n. jkdS

- n22k ni ju,"ds (

F 22 Ft 22 j

wu u, i nig ds - w2 u u,ini(b Jk)jukds (5.15)

1l 1

Since

a a

is a tangential derivative on Z, the three terms on the right side of

(5.15) involve only Cauchy data.

Examine now the volume integrals on the right side of (5.14).

Using the A-G inequality and (5.3),

- WWku2bJku,ijuidx - 2 D 12UUlkbJku, ijuidx

- 1 w2 u2b jku+ 
ijU'ik(dx 

+

bjkbjk( i)u2  )2]dx (5.16)

K ID b k i(u,i)u +d-38-
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where 6 is a positive constant which we may chooje to be as small as

we like and KI  is a computable constant depending on 6. For the last p

integral on the right side of (5.14), note that

D -J w22 (bjk u livu' idx ID- j2 u2 (bk) ,dx

I i!
+J o2u2 [(bik),iu' j],ku' idx 5.17

1  .0

SN

The first integral on the right side of (5.17) can be written as

we

2 2  )u,)kiU,idx W 2 u u,ig(x,v,grad v)ni  -

D1 1

" w 2u 2(Au)g(x,v,grad v)dx

fD1 2

fD [(,2u2)iUg(x~v~grad v)dx 5

where we have integrated by parts and used (5.1). Using the A-G

inequality on the right side of (5.18),

-39-
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2 2 J~2 bku,) , dx :5 - w 2 u 2 g~xvgrad v)u,.n.ds
wD j b i)ki 'i j 1

2 2jk + ()2* 6 jD w ub u iju'ik dx J ()I (ui .u, )(u, .u,. + u )dx

*0(e 2) iu u + u, ii )dx .(5.19)

Integrating the second integral on the right side of (5.17) by parts,

ID1wuu2[(bj),.iu, .],ku,,dx - w2u 2(b k), .U,.iu,.nkds

I w 2 (bijk) Uikj dx r 2)tku2 (b jk) u, iu, dx

2 JD1 t 2uu, i U, ju'k(bjk ),idx .(5. 20)
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Using the A-G inequality and (5.3),

ID 2 u2 (bjk) ,o jd:s6Iw 2 u2 bjk Ui~

+J K u2 (bjk Ji(iku,u .,) 6x ub5..2u1)

2 11

where K2 is a computable constant depending on 6 .Another use of J
2w

the A-G inequality gives

I 2ikik)d
'k (b 1 UiU x :5 K3 J u(bj I V)(u'p. 2)

1 1

to bound the last integral in (5.20) by

I. . ,)x+KdK 5 Du (bikbJ)(uu d I f

5 6,.
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Combining (5.13) through (5.23), we find that for 0 -< a <a,

- (bk uun + (bijk), u, u,jnklds

+ID [(1 + clul)2(u u,.u,i + (u' ,,) 2) + e 2u 2(u 2+ u,.u,.

+ e 2( apa J k ) u uu, Iu ,I dx}

for an explicit constant K7. This, combined with (5.11), give~s the

result of Lemma 7.

Now impose the constraint that the term in braces in the statement

of Lemma 7 is Q(~' q) for some q < 4. Thus,

JD (Lw) 2dx - O(c2-q)(.2
a
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We proceed to derive a differential inequality for the functional

F(a) -Q + -I- [ DwLw + i- ,iwj dl (5.25)

where Q is given by

Q - k 0  w ds + k Jwiw.ids + k2"q (5.26)

As in section 3, one can choose the constants ki  in (5.26) so that an

analog of (3.17) holds, i.e.,

F(a) rwdx + Q (5.27)
D D "

where r - AiJf,f j. Assuming that

(w 2 + w, Wi)ds - 0 (2q) (5.28)

we are prepared to state the remaining estimates, which are understood

to hold on the interval (0, a,). Here, the proofs are very similar toL

those found in Payne (14).

',
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Lemma 8: If F(a) is given by (5.25). then

IF'I < F' + K1F (5.29)

for a computable constant K1 .

Lemma 9: If F(a) is given by (5.25). then

D iJw,w , dx - 2 r'[AiJw,ifj]2dx 
2 - K2F1 - KF

for computable constants K2 and K3.

One may now conclude as in section 2.1, that on the interval

(0, )

FF" - (F') 2 - C1FF' - C2F
2

for explicit constants C1  and C2 . Assuming that

I - 2 - 2 (5.30)
u~dx ( - f) h2dx e 0( " )

we have

Theorem 3: If u and h are solutions of (5.7) and (5.8),

respectively, which satisfy (5,24). (5,28). and (5,30). then for

O <-

-44-



I ( v - e h ) 
2  - O (( )

a

with -y(a) - (4 - q)(a - a1)/(l - a - exp(-CIa), andai exp(-Cla I).

As in the other sections of this chapter, one can find a continuous

dependence inequality for the Dirichlet integral of v - Eh. Introduce

the function u as in section 3 with f < a2  and a a fixed number

between a 2  and a1 " Then

DB  D
3

2 A 2), wd x  I 2 iwLwdx
SJ 

D
a3  a3

2 ij 2 ii
- (p),jAwwdx - A ww n

a af3  3 ~d

Awn.i]ds J ~d

a 3

VD

1 w 2 [A(dx (5.31)

JD
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Use the A-G inequality and the estimates of this section to conclude

that

IDI v- eh), .(v - eh), 1dx o ole Y(a3)]
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6. Concluding Remarks

The arguments in this work do not yield continuous dependence

results if p - 6 in the constraints (3.25) and (4.19), or q - 4 in

(5.24). Such constraints would be desirable since they would not impose

any apriori "smallness" conditions on volume integrals of the solutions

or their derivatives. It is not clear, however, that continuous

dependence results could be obtained from such constraints.

Acknowledgement--The author wishes to thank Professor L.E. Payne for his

assistance in the preparation of this work and the thesis from which it

is derived.
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